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Abstract

Background: Globally, malnutrition underlies 45% of under-5 s mortality, mainly from potentiating common
infections such as diarrhoea and pneumonia. Malnutrition as a public health problem is not evenly disbursed
because of disparities in food insecurity and health, and children commonly suffer recurrent episodes of
opportunistic infections. We aimed to understand better the spatial and temporal structure of multiple paediatric
hospital admissions associated with malnutrition-related illnesses. This paper aimed to investigate the spatial-
temporal variations in malnutrition-related recurrent morbidity of children under-5 years from the Kilifi County in
Kenya between 2002 and 2015.

Methods: The study included data from children under-5 years old who had more than one admission to a rural
district hospital in Kenya within the Kilifi Health and Demographic Surveillance System (KHDSS). The primary
outcome was a malnutrition-related admission, based on wasting (WHZ < -2) or nutritional oedema. Individual,
household and environmental level covariates were examined as exposures. We first fitted a SARIMA model for the
temporality, and the Moran’s Index affirmed spatial clustering in malnutrition admissions. Kulldorf Statistics using
SaTScan were applied to detect hotspots. Then, bivariate analysis was done using repeated values tabulation and
analysis of covariance (ANCOVA). Inferential analysis was done using a mixed effect multivariable negative-binomial
regression model, adjusting for spatiotemporal random effects.

Results: A total of 2821 children were admitted more than once, giving a total of 6375 admissions. Of these 6375
admissions, 1866 were malnutrition-related, and 3.9% (109/2821) of the children with repeat admissions died. There
was a seasonal pattern of re-admissions, peaking from May to July over the years. Hotspots were found in both the
Northern and Southern areas of the KHDSS, while the areas near Kilifi Town were least affected. We found that
disease severity was most likely associated with a malnutrition re-admission to the hospital.

Conclusion: Disease severity was strongly associated with admission with malnutrition but its effect reduced after
adjusting for the spatial and temporal random effects. Adjusting for clustering in space and in time (spatial-
temporal) in models helps to improve the understanding of recurrent hospitalisations involving malnutrition.
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Background
Globally, malnutrition is a cause of 45% of childhood mor-
tality, predominantly by potentiating morbidity due to com-
mon infections such as diarrhoea and pneumonia [1, 2].
Sub-Saharan Africa and South Asia remain the areas with
the highest prevalence of malnutrition [2]. In Sub-Saharan
Africa, malnutrition is a leading cause of death among
children in marginalised populations [2, 3]. It remains a sig-
nificant contributor to in-patient morbidity and mortality
among children in rural areas in Kenya, despite efforts to
overcome malnutrition [4–6]. When various infections
occur, malnutrition complicates their management and in-
creases their case fatality [7]. The case-fatality ratios for
hospitalised severely-malnourished children typically range
from 12% to more than 30% [2, 5, 8]. After discharge, an in-
sufficient recovery period between illness episodes exacer-
bates malnutrition resulting in a vicious cycle. Malnutrition
also majorly affects childhood development and increases
the risk of non-communicable diseases and socioeconomic
productivity in adulthood [1].
Undernutrition is a result of many determinants and

not solely related to food insecurity. In Kenya, funda-
mental immediate and underlying causes of undernutri-
tion have been identified to vary across the different age
groups of 0–24 months and 25–59 months. Child’s birth
size, breastfeeding patterns and acute morbidity experi-
ence have more impact on the younger age group com-
pared to the underlying factors affecting the older age
group [1, 9, 10]. Morbidity which is one of the immedi-
ate factors leading to undernutrition, often resulting in
longer and repeated hospital admissions. Morbidity is
therefore associated with increased inpatient costs to
families and sustains impoverishment [9].
Because malnutrition is due to a complex interaction be-

tween different components, it is difficult to understand in
a way that helps extend preventive and treatment strategies
from current vertical interventions [1, 11]. Malnutrition has
been reported to be spatially heterogeneous and also known
to interact with various components of the environment,
but little research has been done to integrate health, envir-
onmental and population data [12]. Up to now, a lack of
detailed cohort and spatial data at homestead level had
been a significant limitation for such spatial-temporal
centred research of malnutrition in sub-Saharan Africa
[11]. In this study, we use joint spatial-temporal models
rather than mainly cross-sectional approaches [13] to
give a different understanding of individual and con-
textual factors associated with recurrent hospital ad-
missions involving malnutrition.

Methods
Study setting
Secondary data analysis was conducted retrospectively on
observational data from 2002 to 2015 of recurrent pediatric

ward admissions to Kilifi County Hospital (KCH) in Kenya,
including household data from a demographic surveillance.
Kilifi County is located in the Coastal region of Kenya
(shown in Fig. 1); it is a semi-arid area with subsistence
farming being the main economic activity. KCH is the
main referral hospital in Kilifi County with ~ 4000
pediatric admissions to KCH per year. KCH is in the
middle of the Kilifi Health and Demographic Surveillance
System (KHDSS) and captures resident children’s inpatient
details at KCH pediatric ward. The KDHSS was set to
monitor vital demographic indicators, mortality, migration
and fertility in the area predominantly served by KCH.
The KHDSS covers 15 administrative locations and 40

sub-locations. The KHDSS area has approximately 280,000
residents. Data are collected three times a year from house-
holds to record deaths, migration and birth events. Mortal-
ity and morbidity events captured at the hospital are
integrated with the population register [14]. The linkage of
the surveillance data and admissions data is done real time
with the matching of individuals at the point of admissions
as explained in detail elsewhere [14]. The data is then de-
identified by assigning a unique identifier and a corre-
sponding person identifier for the KHDSS residents.

Study participants
For this analysis, we included data from children admit-
ted in KCH from April 2002 to December 2015, aged
between 3 months and 5 years, residents of KHDSS
who had more than one admission event. We excluded
trauma events and children with a missing discharge
outcome. The follow-up of the children started after
the initial admission until the last admission before
reaching 5 years of age (Additional file 1).

Outcome and explanatory variables
The primary outcome of interest was the number of
malnutrition-related readmissions. Malnutrition was
defined using Weight for Height Z-score (WHZ) < − 2
or the presence of oedema at admission. Oedema is a
clinical sign of undernutrition which may include swell-
ing of the feet and skin [15]. The WHZ was calculated
using the 2006 WHO child growth standards [16]. The
weight of the children during admission was done using an
electronic scale (Seca, Birmingham, UK) that has a weekly
check for consistency [5, 17]. The heights of the children
were measured with a stadiometer (Seca 215, Birmingham,
UK) [18] except for children with less than 2 years and
those who could not stand whose length was measured
using a standard calibrated board.
The explanatory variables were selected with the guid-

ance of the UNICEF malnutrition conceptual framework
[1]. Child level variables, i.e. socio-demographic, an-
thropometric and clinical were selected as the immediate
causes and the environmental variables as the underlying
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causes of malnutrition. We generated a composite
variable for severe disease, defined as a child admitted
with either gastroenteritis, Lower respiratory tract
infection (LRTI), blood or Cerebrospinal fluid (CSF)
culture positive, malaria and fever or meningitis [5].
The composite variable was generated from several se-
vere co-morbidities that a child had during the re-
admission times. Environmental predictor variables were
extracted from the Moderate Resolution Imaging Spectro-
radiometer (MODIS) under National Aeronautics and
Space Administration’s (NASA’s) remote-sensing using the
MODISTools and MODIS package in R© version 3.3.2
[19–21]. Estimates from Enhanced Vegetation Index (EVI)
and Rainfall raster files were interpolated from values of
the four nearest raster cells of each admission coordinate
provided [12]. Additional covariates associated with mal-
nutrition morbidity were identified by a total-sets analysis
based on a generalised linear regression model and also
those that have a biologically plausible relationship [22].

Data quality
A team of field workers were trained on using the
KHDSS surveillance system to do the matching of the
data on real-time admissions. Each field worker has ac-
cess to the web-based system following the matching
procedures of the patients explained elsewhere [14].
Qualified medical and clinical officers enter the history
and clinical examination of the patients in the web-app
system after matching has been done by the field

workers. Data quality checks on clinical measurements
are implemented to ensure values entered into the sys-
tem are within the normal biological range. The data-
base has a daily backup, and each event or record
entered into the system has a unique event identifier
and an audit trail.

Statistical methods
Temporal exploratory data analysis
To explore the temporal patterns, the data were defined as
a regular time series data using monthly time points of
counts of malnutrition-related admissions. Augmented
Dickey-Fuller unit-root was used to test for stationarity; the
null hypothesis is there is no seasonality trend in the model.
The stationary series was then examined on the Auto-
Correlation Function (ACF) for the MA lags, and Partial
Auto-Correlation Function (PACF) for the AR lags. This
was followed by fitting combined Autoregressive inte-
grated moving average (ARIMA) and the seasonal compo-
nent to form the SARIMA models detailed in
Additional file 2 [19, 23].
Seasonality was determined using the ACF and PCF

with pointwise confidence intervals based on Bartlett’s
formula. The Portmanteau test was used to confirm the
significance of the seasonality. The Portmanteau test
null hypothesis is that there is no serial correlation
using the white noise under Pearson’s Chi-Square stat-
istic [24]. This was followed by fitting a Seasonal
ARIMA (SARIMA) model.

Fig. 1 KHDSS Facilities. a The Kenyan map, showing the location of KHDSS, b The location of the KHDSS and the different dispensaries and the
main county hospital

Wambui and Musenge BMC Nutrition            (2019) 5:32 Page 3 of 9



Spatial exploratory analysis
The Global Moran Index was used to estimate the meas-
ure of sub-location spatial autocorrelation or random-
ness based on the observed cases of malnutrition
admission. A distance matrix of the sub-locations cen-
troids was used to calculate the Moran’s index [25, 26].
The Moran’s Index was calculated based on the central
limit theory on the distribution of the index, which
states that as the sample size increases the index tends
to a normal distribution. The Moran Index is interpreted
depending on the three outcomes; I > E(I) shows a posi-
tive autocorrelation implying clustering and I ≈ 0 shows
no spatial autocorrelation and I < E(I) shows a negative
autocorrelation implying a dispersed neighbouring value,
where E(I) is the normally distributed population mean.
A window scanning over space was done comparing

the observed versus the expected over the country
using the SaTScan software. SaTScan applies the
Kulldorff spatial scan statistic which imposes a circu-
lar window and calculates the likelihood of observing
the events inside and outside the study area. The cir-
cle with the maximum likelihood is defined as the
most likely cluster [27, 28]. This helps to determine
local heterogeneity and clustering of malnutrition-
related repeated admission to hospital to isolate the
hot and cold spots in Kilifi County.

Bivariate analysis
Our outcome was defined as the counts of malnutrition-
related admissions, reflecting the burden and distribu-
tion of malnutrition and pattern of hospital utilisation.
The data had a repeated event structure for the individuals
over time. For the bivariate analysis, panel data tabulations
were applied to investigate the between-individual vari-
ation and within-individual variation. This helps to under-
stand the individual systematic difference and differences
between individuals over time.
Repeated measures analysis of covariance (ANCOVA)

was applied to compare the differences between the con-
tinuous predictors and the outcome.

Inferential statistics
The malnutrition related morbidity was observed to follow
a negative binomial distribution. Negative binomial is a
generalisation of the Poisson distribution used to provide
better epidemiological estimates of factors associated with
malnutrition with repeated data [29, 30]. Secondly, the
variance of the malnutrition-related admissions was higher
than the mean, so a negative binomial distribution fitted
our count data well [29, 31, 32]. Negative binomial spatial-
temporal regression was applied to identify the spatial and
temporal pattern of malnutrition admissions in Kilifi. The
hypothesis tested was that readmission to hospital with
malnutrition has spatial and temporal structure due to the

individual level, and environmental covariates that underlie
the risk. The count of admissions of the individuals was
used as the temporal component and age was used as the
exposure variable on our model. An autoregressive time
series model was used to select the order for the temporal
component to use in the spatial-temporal model.
Multivariable analysis was done using non-spatial,

spatial and spatial-temporal models for admission
specific and environmental variables with sub-location
information.

Model fit
We used the adapted Stochastic Partial Differential Equa-
tions (SPDE) in Integrated Nested Laplace approximation
(INLA) for the spatial-temporal model, and the Markov
chain Monte Carlo (MCMC) with Metropolis-Hastings
algorithms approaches in OpenBUGS software from Med-
ical Research Council (MRC) Biostatistics Unit [33] for
spatial models using a Bayesian approach. STATA13™ was
used to fit the multilevel models using Maximum Likeli-
hood estimation. The advantage of Bayesian models over
the MLE models is the combination of the prior informa-
tion with the data through Bayes theorem to obtain pos-
terior distributions. Convergence of the Bayesian Markov
Chain Monte Carlo approach was monitored using the
trace plots. For model comparison and best fit, we used
the Deviance Information Criterion (DIC), where the
smaller of the DIC was considered better taking into ac-
count the Pd. The pD is the difference of posterior mean
deviance and deviance of posterior means which penalises
for the parameters in the model [34, 35].

Results
Over the 14 years, 2821 children under-5 years had at
least two admissions in KCH, totalling 6375 admission
events including the initial admission. Malnutrition-
related admissions were identified in 1054/2821 (37% of
children ever admitted) of the children. Of the 1054
children ever admitted with malnutrition, 76% (percent-
age within) of their re-admissions were malnutrition-
related (Table 1). This shows that there are children who
sometimes had a malnutrition re-admission and at other
times a non-malnutrition related re-admission. Add-
itionally, of the children with readmissions, 31.6% of the
children had a positive malaria re-admission, and 74% of
their re-admissions were reported to had malaria.

Temporal exploration
The temporal analysis was fitted for monthly data for
the period from April 2002 to December 2015. The time
series autoregression order 1, integration order 0 and
moving-average1 forming the ARIMA (1,0,1).
The AutoCorrelation Function (ACF) and Partial auto-

correlation Function (PACF) of the transformed series
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using data from 2002 to 2015 showed peaks at different
lag periods as shown in “Additional file 3”.
Significant serial correlation (seasonality) of months be-

tween May and July were observed for children admitted
with malnutrition as shown in Fig. 2. This was confirmed
with a significant (p < 0.001) Portmanteau test for white
noise. Different peaks are observed, but in general, the
malnutrition-related admissions decline over the period.
The tables in “Additional file 3” shows the monthly counts
of malnutrition admissions and mortality for the period
between 2002 and 2015.

Spatial exploration
A Global Moran’s I of 0.1 (p-value< 0.001, sd = 0.029)
was observed showing a positive autocorrelation imply-
ing clustering. Based on the calculated Global Morans
Index, we rejected the zero spatial autocorrelation hy-
pothesis. The Kulldorff spatial scan statistic using SaTS-
can showed hotspots in the Northern and Southern
areas of Kilifi urban area where the main hospital is
based. Areas closer to the main hospital and Kilifi town
were observed as cold spots of malnutrition-related ad-
missions as shown in Fig. 2. Four of the five hot spots

Table 1 Panel characteristics of the study population (Child Level Variables) for the period between 2002 and 2015

Overall

Total Individuals Overall Admissions (%) Between N (% between; % within)a

Gender Male 2821 3637 (57.0) 1583 (56.1;100)

Female 2738 (43.0) 1238 (43.9;100)

Age group 3–23 months 2821 3846 (60.4) 2060 (73.0; 81.9)

24-60 months 2527 (39.7) 1519 (53.9;74.6)

Malnutrition NO 2821 4509 (70.7) 2282 (80.9;88.8)

YES 1866 (29.3) 1054 (37.4;75.5)

Severe diseases 0 2821 2616 (41.4) 1709 (60.6;66.1)

1 3434 (53.9) 2160 (76.6;71.5)

2 307 (4.8) 284 (10.1;48.9)

3 18 (0.3) 17 (0.6;47.1)

Severe anaemia NO 2807 5695 (93.6) 2741 (97.7;96.0)

YES 389 (6.4) 309 (11.0;57.1)

Hypoglycaemia NO 2587 5173 (99.1) 2572 (99.4;99.5)

YES 48 (0.9) 45 (1.7;62.5)

Malaria NO 2805 4731 (78.2) 2375 (84.7;90.5)

YES 1321 (21.8) 885 (31.6;74.1)

Diarrhoea NO 2821 4992 (78.5) 2559 (90.7;85.6)

YES 1366 (21.5) 1055 (37.4;59.8)

Menengitis NO 2821 6295 (99.2) 2815 (99.8;99.3)

YES 53 (0.8) 50 (1.8;50.7)

LRTI NO 2821 4435 (69.9) 2441 (86.5;81.9)

YES 1913 (30.1) 1285 (45.6;63.9)

Gastroenteritis NO 2821 5391 (84.9) 2642 (93.7;89.8)

YES 957 (15.1) 772 (27.4;58.3)

Transfused NO 2819 5969 (94.1) 2768 (98.2;95.8)

YES 376 (5.9) 302 (10.7;55.1)

Blood Culture NO 2795 5901 (96.3) 2779 (99.4;96.9)

YES 227 (3.7) 208 (7.4;48.7)

CSF Culture NO 950 1185 (98.9) 942 (99.2;99.8)

YES 13 (1.1) 12 (1.3;81.9)

NB: YES means positive test result for a given test, Between N tells us how many children had the specific characteristic of interest, % between tells us the fraction
of the Total Individuals that had the characteristic, % within tells us the fraction of the re-admissions a child had the specified characteristic. Malnutrition (YES) –
WHZ < -2 or Oedema, Severe anemia (YES)- Hemoglobin ≤ 5 g/dl, Hypoglycaemia (YES) - Blood glucose < 3.0 mmol/l, Malaria (YES) – parasite by microscopy fever,
Meningitis (YES)- Final discharge diagnosis of meningitis; LRTI (Yes) – presence of Lower respiratory tract infections - Cerebrospinal fluid. a - one-way tabulation of
counts of between and within individuals in repeated admissions data (panel data)
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and cold spots were significant, the cluster (Mwapula,
Marere, Magogoni-K, Mdangarani, Vinagoni, Chivara) was
the one observed not to be significant for malnutrition-
related admissions. The temporal clustering of malnutrition-
related admissions (shown in “Additional file 3”), kept on
shifting over the periods but similar regions were observed.
The age of the child at re-admission was used as the

offset variable, and the count of malnutrition-related
admissions was used as the temporal variable for more
epidemiological intuitive results. The codes of the Inte-
grated Nested Laplace approximation (INLA) approach
and Multilevel modelling are in “Additional file 4”.
As shown on Table 2 three models were fitted, a multi-

level model adjusting for the sub-location random effects, a
spatial model and the spatial-temporal model using nested
Laplace approximations which have better computational
capability over the Markov Chain Monte Carlo approach

(MCMC) [36]. The estimated mean coefficients are re-
ported in Table 2 with a 95% confidence interval based on
the Maximum Likelihood Estimation (MLE) approach and
95% credible intervals for the Bayesian approach.
In general, the spatial-temporal models had a lower

DIC compared to non-spatial models but with extra-
temporal parameters. Bayesian spatial-temporal model
using R-INLA was the model with the best fit with a
DIC = 10,656.28 (pD = 28.41) which was the lowest
compared to the spatial model which had a DIC =10,
982.20 (pD = 21.46).
The spatial-temporal model showed consistent results

with the non-spatial model except for the severe disease
which changed. The final spatial-temporal negative bino-
mial model was considered the “model of best fit” which
caters well for over-dispersion and spatial-temporal
confounding.

Fig. 2 Time Series and Hotspot analysis results. a time series plot for monthly malnutrition recurrent admissions. b Hotspots and Coldspots of
Malnutrition admissions between 2002 and 2015 in KHDSS

Table 2 Non-spatial and spatial multivariable negative binomial models adjusted for duration of admission

Variables Multi-level model Spatial Structured and Unstructured
Random Effects Model (INLA)

Spatial Structured and Unstructured
and Temporal Random Effects Model

Coefficients (95% C.I) p-value Mean (95% Cr .I) Mean (95% Cr .I)

Location level variables

EVI ( 0.17 (-0.54;0.88) 0.644 0.07 (-0.58;0.70) 0.04 (-0.58;0.66)

Rainfall (mm) 0.03 (-0.03;0.09) 0.350 0.03 (-0.02;0.08) 0.03 (-0.02;0.08)

Child level variables

Gender: Male -0.15 (-0.25;-0.04) 0.006 -0.13 (-0.22;-0.04) -0.13 (-0.22;-0.04)

Severe Disease

1 0.41 (0.30;0.52) <0.001 0.16 (0.06;0.25) 0.19 (0.10;0.28)

2 0.43 (0.18;0.69) 0.001 0.07 (-0.16;0.29) 0.15 (-0.07;0.37)

3 0.89 (0.06;1.71) 0.036 0.56 (-0.15;1.25) 0.53 (-0.16;1.18)

Total Number of Admissions 0.20 (0.17;0.23) <0.001 0.2 (0.17;0.22) 0.07 (0.04;0.11)

DIC (pD) 10982.20 (21.46) 10656.28 (28.41)
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Adjusting for the spatial-temporal effects and other fac-
tors, males were less likely to have malnutrition re-
admission (RR = 0.88 (Cr.I = 0.80–0.96) compared to the
females. In the non-spatial model, the increase in the
number of severe diseases increased the risk of malnutri-
tion readmission. On the same note, the spatial-temporal
effects, the levels 2 and 3 of severe diseases were insignifi-
cant. The environmental variables were not significantly
associated with malnutrition re-admission in both the
multilevel and spatial-temporal models.
Posterior temporal estimates of readmission were

displayed on structured maps shown in Fig. 3 after
running the spatial-temporal model. This shows the
overall hot spots and cold spots of malnutrition re-
admission. Over the years, using Kuldorf Statistics
(“Additional file 3”), the hotspots were consistent in
the north and south of the creek. The readmission
hotspots and cold spots were stable until the 6th re-
admission. The instability in the other readmission
events could be due to a few children with these
readmission events. Some sub-locations close to the
Kilifi town and Kilifi County Hospital were identified
as hotspots of readmission with malnutrition after
adjusting for covariates. Areas with darker red have a
higher risk of admission with malnutrition, and blue
shades indicate a lower risk of a malnutrition admis-
sion. The plots in Appendix 7 (“Additional file 3”)
shows that the parameters of the model fitted well
since they follow a Gaussian distribution; thus the
mean and the mode are equal.

Discussion
This study describes the spatial-temporal admission of a
group of children with repeated malnutrition-related re-
admissions to Kilifi County Hospital admissions between
2002 and 2015. A seasonality of malnutrition-related re-
admissions was observed, with peaks occurring in July
when the rainy season was mainly observed. Emelda et
al. reported a significant decline in malaria admissions at
many hospitals in Kilifi. They reported this was observed
against a background of elevating or regular non-malaria
admissions and impervious to long-term rainfall
throughout the surveillance period [37]. In Somalia,
Kinyoki et al. observed a clear seasonal variation in wast-
ing for children below 5 years due to variations in cli-
mate, food security, and infectious diseases. The peaks
of malnutrition were observed during the dry season
and were reported to have an elevated effect for the
rainy season [37]. This can be used to explain the peaks
of malnutrition-related admissions in Kilifi county hos-
pital during the rainy season. However, the environ-
mental factors were not associated with malnutrition
readmissions.
Severe diseases, days of admission and rainfall were fit

as covariates with malnutrition readmission as the out-
come on our model. Severe disease was defined as the
presence of either gastroenteritis, Lower respiratory tract
infection (LRTI), blood and Cerebrospinal fluid (CSF)
culture positive, positive malaria test examined by
microscopy and fever or meningitis. In Somalia and
Malawi, infections and geographical factors, including

Fig. 3 Bayesian modelling results. Malnutrition related hotspots (red shade) and cold spots (blue shade) in KHDSS 2002–2015, results from the
Bayesian spatial-temporal; a Overall Model, b Temporal Variation of malnutrition re-admissions (re-admission 1 to 11)
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the Enhanced Vegetation Index were observed as critical
drivers of malnutrition [13, 38]. Similarly, in our analysis
children with a higher number of severe diseases were as-
sociated with an increased risk of the admission involving
malnutrition. Contrary to the Somalia model, the EVI did
not affect the risk of a malnutrition re-admission in the
spatial-temporal model. However, overall, the mean EVI
value (0.18) in Somalia was lower than the EVI value in
Kilifi, Kenya (0.39).
In contrast to EVI, rainfall seasonality was associated

with malnutrition admission which is similar to the time
series analysis done by Karuri et al. that reported a sea-
sonality during rainfall peaks for malaria admissions in
the Kenya Coast [39]. This was different from a longitu-
dinal malnutrition study done in Ethiopia where acute
malnutrition did not have a significant seasonality [40].
Here, we combined both the spatial and temporal ran-
dom effects and the environmental variables in our
modelling approach. Thus, malnutrition could be pos-
sibly explained by the infections that occur during rainy
seasons like diarrhoea or malaria.

Conclusion
Sabrina et al. in 2014 review recommended the import-
ance of combining spatial and temporal components in
understanding the compounded phenomenon of malnu-
trition [11]. Though, with the different recommendations
of spatial models to get an improved understanding of
malnutrition; some of them require higher computing re-
sources for an imbalanced and large dataset. In our model,
we utilise a spatial-temporal approach which shows the
importance of space and time in understanding the risk
factors of malnutrition-related morbidity.
This study demonstrates that it is feasible to map epi-

sodes of repeated admission to hospital with malnutri-
tion related morbidity at high spatial resolutions. The
work has also utilised recently developed statistical tools
together to develop spatial-temporal models that con-
verged rapidly without loss of predictive accuracy. The
contribution of infections provides a better understand-
ing of the drivers of repeated admissions with malnutri-
tion as a co-morbidity.
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